On MMSE Estimation: A Linear Model Under Gaussian Mixture Statistics
نویسندگان
چکیده
منابع مشابه
Jointly Gaussian random variables, MMSE and linear MMSE estimation
• Proof: X is j G implies that V = uX is G with mean uμ and variance uΣu. Thus its characteristic function, CV (t) = e ituμe−t 2uTΣu/2. But CV (t) = E[e itV ] = E[e TX ]. If we set t = 1, then this is E[e TX ] which is equal to CX(u). Thus, CX(u) = CV (1) = e iuμe−u TΣu/2. • Proof (other side): we are given that the charac function ofX, CX(u) = E[eiuTX ] = e μe−u TΣu/2. Consider V = uX. Thus, C...
متن کاملAnalytic MMSE Bounds in Linear Dynamic Systems with Gaussian Mixture Noise Statistics
Using state-space representation, mobile object positioning problems can be described as dynamic systems, with the state representing the unknown location and the observations being the information gathered from the location sensors. For linear dynamic systems with Gaussian noise, the Kalman filter provides the Minimum Mean-Square Error (MMSE) state estimation by tracking the posterior. Hence, ...
متن کاملGaussian Mixture Model estimation
One of the keystones of the canceled BTeV experiment (proposed at Fermilab’s Tevatron) was its sophisticated threelevel trigger. The trigger was designed to reject 99.9% of lightquark background events and retain a large number of B decays. The BTeV Pixel Detector provided a 3-dimensional, high resolution tracking system to detect B signatures. The Level 1 pixel detector trigger was proposed as...
متن کاملNon-linear Mmse Estimation
For the first time it is here shown that Symbolby-Symbol Maximum A Posteriori (SbS-MAP) receivers are able to generate Non-Linear Minimum Mean Square Error (NL-MMSE) estimates of the transmitted symbols.
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2012
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2012.2192112